PINGUICULA CRYSTALLINA SIBTH. ET SMITH SUBSP. HIrtIFLORA
(TEN.) STRID (LENTIBULARIACEAE) IN CALABRIA (SOUTHERN ITALY). CYTOTAXONOMICAL STUDY AND EX SITU CONSERVATION IN THE BOTANIC GARDEN OF CALABRIA UNIVERSITY

LORENZO PERUZZI, NICODEMO GIUSEPPE PASSALACQUA, GIULIANO CESCA • The Natural History Museum of Calabria and Botanic Garden • Calabria University • 87030 Arcavacata di Rende (CS) • Italy • peruzzi@unic.al.it

Keywords: Ecology: conservation, cultivation, genetics — Pinguicula crystallina, Pinguicula hirtiflora.

Introduction

According to Casper (1966), Pinguicula hirtiflora Ten. (Lentibulariaceae) belongs to the subgenus Isoloba Barnhart, section Cardiophyllum Casper. It was originally described from plants found in the area of Castellammare di Stabia (Salerno, Southern Italy; Tenore, 1811).

Plants corresponding to this original description occur in Italy in Campania and Calabria (Casper, 1962; Casper, 1970; Pignatti, 1982; Moraldo et al., 1986; Pinto et al., 2000); the citation with doubts (Casper, 1962) for plants in Abruzzi (Mount Pelone) were later shown to be P. vulgaris L. (Tammaro & Pace, 1987). Pinguicula hirtiflora populations are found at locations from southeastern Italy to the southwestern part of the Balkan Peninsula (Casper, 1966). Moreover this unit was recently reported, with several doubts on its spontaneity, for France in the Roya river Valley (Joly et al., 2002).

It is the only Italian Pinguicula which has a tropical growth type (Casper, 1962; Casper, 1966; Legendre, 2000), i.e. it shows an overwintering basal rosette that makes it interpretable as a Thermophilous relic. In contrast, other Pinguicula species from Italy overwinter as buds (hibernacula), and they are all microtherm elements. Pinguicula hirtiflora has recently been reduced to a subspecies (Strid, 1991) of P. crystallina Sibth. et Smith, this latter taxon being a vicarious oriental unit that occurs from Cyprus to Anatolia (Casper, 1970; Greuter et al., 1989).

Pinguicula hirtiflora is very rare and localized in Italy, justifying its IUCN listing as “Vulnerable” (VU; Conti et al., 1997). In Calabria, where it is known from only one stand, it is assigned to the category “Critically Endangered” (CR). These plants are at approximately 200 m a.s.l. on stellicidous calcareous cliffs along the Celadi stream. The stand is subject to great risk because it is near a road, and the population is only a few hundred individuals in an area of around 50×10 meters. Recent road maintenance has destroyed part of the population. We have therefore placed plants into cultivation at the Botanical garden of the University of Calabria, with the goal of preserving the plant ex situ. The presence of P. hirtiflora in the Botanical Garden has allowed us to conduct a karyological study that has given interesting results.

Material and methods

Approximately 20 plants were collected in October 2000 and placed into greenhouse cultivation. The microhabitat built for them consists of a calcareous, friable substratum, over which water continuously drips. Plants that occur with P. hirtiflora (liverworts, Marchantiophyta; ferns, Adiantum capillus-veneris L.) are grown on the substratum so as to reproduce the conditions of the natural habitat as accurately as possible (see Figure 3).

Pinguicula hirtiflora herbarium specimens in Florence (FI), Naples (NAP), and Rome (RO) were examined in order to make morphological and chorological observations and comparisons to the plants from Calabria.
Specimina visa - Italy, Campania: Locis arenosis “aqua santa” in regione superiore M. S. Angelo prope Castellammare regionis neapolitanese, 3/VI/1874, Henker (Fl); rupii umide all’Acquasanta di Monte Sant’Angelo di Stabbia, 22/VIII/1891, Martelli (Fl); Amalfi: Valle delle Ferriere, 31/V/1952, Moggi (Fl); ad fontium stillicidius Acqua Santa M.te S. Angelo di Castellammare, s.d., Tenore (Fl); Castellammare Acqua Santa, IX/1843, Avellino (Fl); adorna bellamente le stalattiti della Grotta Bonné, 10/V/1862, Pasquale (Fl); Ad rupes humidas Aqua S.ta montis S. Angelo supra Castellammare, 2/VIII/1855, Huet du Pavillon (Fl); Grotta dei Porci ossia Grotta dell’Acquasanta M. S. Angelo di Castellammare ossia dei Tre Pizzi 1200 m ca., 22/VIII/1891, Sommier (Fl); M. S. Angelo di Castellammare rupii stillanti all’acquasanta 1400 m ca., VII/1911, Guadagno (Fl); M. S. Angelo di Castellammare. Rupi calcareae acquitrinose 1250-1800 m, 27/VI/1909, Pellanda (Fl); Vetrie a mare (Salerno) nuova stazione sul livello del mare scoperta da Hoffman, su rocce calcareae del Trias stillanti, 4/IX/1954, Alexander (Fl); Napoli, 1943, Alexander (Fl); in paludosi Amalfi, 1876, Lacaita (Fl); Faggeti in uno stillicidio all’Acqua Santa circa 1300 m presso Vico equense (M. S. Angelo napoletano), 24/VIII/1891, Biondi (Fl); Ravello (Salerno) calcarea 350-400 m, 28-29/VII/1921, Fiori (Fl); Valle della Ferriera (Amalfi), 31/V/1952, Corraddi, Bovazzano et Contardo (Fl); Castellammare, VI, s.l. (RO); Montibus Stabiarum, s.d., s.l. (RO); Monti Stabiani, VI/1879, Pasquale (RO); Sulla roccia per la quale gronda l’acqua così detta Santa alla base del pianalto primo di S. Michele a Castellammare, 1883, Pedicino (RO); In unico loco prope Neapolim all’Acqua Santa M. S. Angelo a Castellammare, s.d., Pasquale (RO); A aquae stillicidius Acqua Santa supra M.te S. Angelo, 3/VI/1877, Pasquale (RO); All’Acqua Santa sul M.te S. Angelo di Castellammare, s.d., Tenore (RO); Monte S. Angelo di Castellammare, VII/1895, Homig (RO); Amalfi, s.d., s.l. (RO, sub Pinguicula vulgaris); Grotta di Bonnéé, sotto la Trinitá, VI/1864, s.l. (RO); Grotta di Bonnéé a Cava, VI/1868, Pedicino (RO); Grotta di Bonnéé sotto la Trinitá a Cava ai Mulini, VI/1864, Pedicino (RO); Avvocatella sopra Cava, e preso il Mulino della s.d., Tenore (NAP); Castellammare, s.d., Tenore (NAP); Calabria: Presso Rossano, Torrente Celadi, alt. ca. 200 m s.l., 20/IV/1979, Del Prete, Garbari, Cesca (CLU); Greece: In valle laterali sinistra fiuminis Achellion vico Petroon 2 Km orientem versus (Grecia, Thessalia, Nomos et Eparchia karditsis) alt. 500 m. s.l., in rupibus schistosis scaturiginis Adianto capillus veneris admixto, 19/IX/1980, Binder, Hagemann, Hempel et Raus (Fl); In Monte Parnasso in scaturiginis reg. abietinae, VIII/1852, Heldreich (Fl); In saxosis irriguis reg. super. M. Olympus Thessaliae, 21/VII/1857, Heldreich (Fl); Karistae greola nächst Vucia (Flora for Heroegovina), 2/VII/1872, Pansocyck (Fl, sub Pinguicula laeta mini); Olympus Thessalia ad scaturinges prope Higios Dionyous, 12/IX/1910, Halácsy (Fl); In Monte Korax Aetoliae objectae. In regione abietina superiori alt. 5500 fts., 24/VII/1879, Heldreich (Fl); 5500 fts., west of Katara, north-facing slope in dense shade of beech-trees sopping-wet bank of stone alluvium and leaf mould by streams and with water percolating through it; exquisite lavender flowers; 3-4 m., 6/VIII/1964, Archibald (Fl); Habitat in regione superiori montes Chelmos Peloponesi (Apzannua Opu) prope Stygem alt. 6000 fts., 6/VII/1851, Orphanides (Fl, sub Pinguicula megaspatae Boiss. et Orphanides).

For the karyological study, root tips were treated with a 0.3% solution of colchicine and fixed in Carnoy; afterwards they were hydrolyzed in 1N HCl solution and coloured with fuchsin; finally, they were squeezed in acetic orcin for counting and observation of chromosomes. In some cases we used phase contrast. At least five plants were used in order to establish the chromosome number.

Systematic study

Lectotypus (here designated, Figure 1): M.te della Cava di Castellammare, all’acqua Santa, s.d., Tenore (NAP!, erroneously designated as the holotype by Casper, 1966); other original material: Avvocatella sopra Cava, e preso il Mulino della Trinitá, s.d., Tenore (NAP); Castellammare, s.d., Tenore (NAP); ad fontium stillicidius Acqua Santa M.te S. Angelo di Castellammare, s.d., Tenore (Fl); All’Acqua Santa sul M.te S. Angelo di Castellammare, s.d., Tenore (RO).
Figure 1. Lectotype of Pinguicula hirtiflora Ten., conserved in NAP.
In addition to the taxa listed above, we believe the following to be synonymic: *P. hirtiflora* Ten. f. pallida Casper, Biblioth. Bot. 127/128: 107 (1966); *P. hirtiflora* Ten. var. gionae Contandriopoulos et Quezel, Rev. Biol. Ecol. Medit. 1: 30 (1974).

The studied Calabrian plants have a peculiar chromosome number, $2n = 27$ (Figure 2), a number that was also reported for this unit in material from Thessalia, Greece (Strid & Franzen, 1981). For plants collected in the same Calabrian locality of our ones, the chromosome complement $2n = 28$ (Mikeladze & Casper, 1997) was already reported. Populations from the locus classicus in Campania have diploid chromosome complements $2n = 16$ (Honsell, 1959). Contandriopoulos & Quezel (1974) reported $2n = 16, 24, 32, 48$ for this unit in Greek material. They tried to correlate the ploidy level with some minor morphological differences, and identified four varieties for *P. hirtiflora*. We think the chromosome numbers $2n = 27, 28$ to be strictly correlated to triploids $2n = 24$ by ascending aneuploidy phenomena (or perhaps occurrence of B chromosomes, although it is very difficult to establish it for the extreme homogeneity of the chromosome size). A situation, in our opinion, to be interpreted in a similar way, occurs in *P. crystallina* subsp. *crystallina*: Contandriopoulos & Quezel (1974) counted $2n = 24$ chromosomes in material from Turkey, Mikeladze & Casper (1997) counted $2n = 28$ chromosomes in plants from Cyprus (where the species was described).

We do not pretend, in this work, to give an exhaustive survey of the variability of *P. crystallina* subsp. *hirtiflora*, since we have not been able to examine specimens from some places (i.e. Albania); however our plants are fully identifiable with typus material, and the quantitative differences observed, between Greek and Italian material are weak (Table 1); thus, to the actual state of knowledge, in our opinion the differences (both morphological and karyological) do not allow us to distinguish (for nomenclatural purposes) taxonomic categories within *P. crystallina* subsp. *hirtiflora*; although under this binomial probably more than one taxa are united.

Table 1. Morphological and karyological features of *Pinguicula crystallina* Sibth. et Smith subsp. *hirtiflora* (Ten.) Strid from different provenances. Data come from bibliography, herbarium specimens cited in the text and the present study. Values are in 10-90 percentiles with extreme values in brackets.

<table>
<thead>
<tr>
<th></th>
<th>Italy, Calabria</th>
<th>Italy, Campania</th>
<th>Greece</th>
</tr>
</thead>
<tbody>
<tr>
<td>length of leaves</td>
<td>2-4 cm</td>
<td>2-4(6) cm</td>
<td>(3)-5-6 cm</td>
</tr>
<tr>
<td>width of leaves</td>
<td>10-15 mm</td>
<td>10-18 mm</td>
<td>15-25 mm</td>
</tr>
<tr>
<td>length of scape</td>
<td>7-10 cm</td>
<td>(3)-4(7) cm</td>
<td>10-12 cm</td>
</tr>
<tr>
<td>number of scapes</td>
<td>1-3</td>
<td>(1)-2(4)</td>
<td>1-4</td>
</tr>
<tr>
<td>length of corolla</td>
<td>13-14 mm</td>
<td>10(15) mm</td>
<td>10-15 mm</td>
</tr>
<tr>
<td>length of upper lobes</td>
<td>5 mm</td>
<td>(4)-5(6) mm</td>
<td>4-5 mm</td>
</tr>
<tr>
<td>length of lower lobes</td>
<td>8 mm</td>
<td>(4)-7(8) mm</td>
<td>6 mm</td>
</tr>
<tr>
<td>length of spur</td>
<td>8-9 mm</td>
<td>6(10) mm</td>
<td>10-15 mm</td>
</tr>
<tr>
<td>length of calyx</td>
<td>3 mm</td>
<td>2-3(4) mm</td>
<td>3-4 mm</td>
</tr>
<tr>
<td>chromosome number</td>
<td>$2n=27^a, 28^b$</td>
<td>$2n=16^c$</td>
<td>$2n=16, 24, 27, 32, 48^d$</td>
</tr>
</tbody>
</table>

^aSee Figure 2.
^cHonsell, 1959.
^dContandriopoulos & Quezel, 1974; Strid & Franzen, 1981.

Conservation *ex situ*

After almost two years the plants have fully adapted to artificial cultivation. Flowers are produced plentifully April-July (Figures 4,5), resulting in seedlings (Figure 6). Vegetative reproduction has not

Volume 33 September 2004 71
been observed for this plant. The reproduction by seed is unexpected because of the anomalous diploid chromosome number, so we think that the phenomenon of apomixy might be occurring. Further studies about embryology and biology of the reproduction of these plants are planned.

Conclusions

This study confirms the necessity to preserve the *P. crystallina* subsp. *hirtiflora* population from Rossano (Calabria, southern Italy) because it is the only Italian population which show $2n=27$, a cytological peculiarity known otherwise only from plants in Greece. The small habitat recreated in the Botanical Garden of Calabria University contributes to this aim and has also become a major point for guided visits, where the school students and visitors are spellbound and interested from this delicate and aesthetically attractive carnivorous plant.

Acknowledgements: Many thanks are due to the curators of FI, NAP and RO herbaria for the precious help and availability, and in particular to Dr. Annalisa Santangelo (University of Naples) for sending us digital pictures of original material; to Jessica Barbieri for helping in the translation work.

References

Figure 3. Full-view of the microhabitat where *P. crystallina* subsp. *hirtiflora* is cultivated in the Botanical Garden of Calabria University.

Figure 4. *P. crystallina* subsp. *hirtiflora* from Botanical Garden of Calabria University in full anthesis, general view.

Figure 5. *P. crystallina* subsp. *hirtiflora* from Botanical Garden of Calabria University in full anthesis, particular of the flower.
Figure 6. Seedlings of *P. crystallina* subsp. *hirtiflora* germinating in the Botanical Garden of Calabria University.

Nepenthes Tours

Borneo

Sumatra

New itineraries for 2005 online now!

Exciting options for Sabah - Kinabalu, Marai Parai, Trusmadi, Tambuyukon, plus all your old Sumatran favourites, a tour for couch potatoes and a crazy goose chase. Now you have no excuse!
www.junglegeeks.com